logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002525_03333

You are here: Home > Sequence: MGYG000002525_03333

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Yersinia intermedia
Lineage Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Yersinia; Yersinia intermedia
CAZyme ID MGYG000002525_03333
CAZy Family GH4
CAZyme Description putative 6-phospho-beta-glucosidase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
437 MGYG000002525_13|CGC2 48089.51 6.2709
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002525 5023222 Isolate Finland Europe
Gene Location Start: 57136;  End: 58449  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002525_03333.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH4 5 184 8.4e-67 0.9888268156424581

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd05296 GH4_P_beta_glucosidase 0.0 5 431 2 419
Glycoside Hydrolases Family 4; Phospho-beta-glucosidase. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases such as the phospho-beta-glucosidases. Other organisms (such as archaea and Thermotoga maritima ) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. The 6-phospho-beta-glucosidase from Thermotoga maritima hydrolylzes cellobiose 6-phosphate (6P) into glucose-6P and glucose, in an NAD+ and Mn2+ dependent fashion. The Escherichia coli 6-phospho-beta-glucosidase (also called celF) hydrolyzes a variety of phospho-beta-glucosides including cellobiose-6P, salicin-6P, arbutin-6P, and gentobiose-6P. Phospho-beta-glucosidases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
COG1486 CelF 0.0 1 437 1 442
Alpha-galactosidase/6-phospho-beta-glucosidase, family 4 of glycosyl hydrolase [Carbohydrate transport and metabolism].
cd05197 GH4_glycoside_hydrolases 3.00e-145 4 425 1 424
Glycoside Hydrases Family 4. Glycoside hydrolases cleave glycosidic bonds to release smaller sugars from oligo- or polysaccharides. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by GH4 glycoside hydrolases. Other organisms (such as archaea and Thermotoga maritima) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. GH4 family members include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. They require two cofactors, NAD+ and a divalent metal (Mn2+, Ni2+, Mg2+), for activity. Some also require reducing conditions. GH4 glycoside hydrolases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
cd05298 GH4_GlvA_pagL_like 3.47e-89 4 434 1 436
Glycoside Hydrolases Family 4; GlvA- and pagL-like glycosidases. Bacillus subtilis GlvA and Clostridium acetobutylicum pagL are 6-phospho-alpha-glucosidase, catalyzing the hydrolysis of alpha-glucopyranoside bonds to release glucose from oligosaccharides. The substrate specificities of other members of this subgroup are unknown. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP_PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases, which include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. Members of this subfamily are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
cd05297 GH4_alpha_glucosidase_galactosidase 2.12e-72 4 424 1 420
Glycoside Hydrolases Family 4; Alpha-glucosidases and alpha-galactosidases. linked to 3D####ucture

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AVL36721.1 0.0 1 437 1 437
ARB82976.1 0.0 1 437 1 437
AJJ18089.1 0.0 1 437 1 437
QGR68485.1 0.0 1 437 1 437
VDZ60680.1 0.0 1 437 1 437

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5C3M_A 1.03e-156 2 434 3 437
Crystalstructure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_B Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_C Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_D Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus]
1S6Y_A 4.00e-152 2 434 6 440
2.3Acrystal structure of phospho-beta-glucosidase [Geobacillus stearothermophilus]
1UP7_A 7.87e-89 2 431 1 414
Structureof the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_B Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_C Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_D Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_E Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_F Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_G Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_H Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8]
1UP4_A 3.65e-86 5 431 2 412
Structureof the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_B Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_C Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_D Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_E Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_F Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_G Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_H Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8]
1UP6_A 3.76e-86 5 431 3 413
Structureof the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_B Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_C Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_D Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_E Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_F Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_G Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_H Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P46320 2.20e-149 2 434 3 436
Probable 6-phospho-beta-glucosidase OS=Bacillus subtilis (strain 168) OX=224308 GN=licH PE=2 SV=1
P17411 1.31e-107 2 436 3 441
6-phospho-beta-glucosidase OS=Escherichia coli (strain K12) OX=83333 GN=chbF PE=1 SV=4
Q9X108 5.74e-88 5 431 2 412
6-phospho-beta-glucosidase BglT OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=bglT PE=1 SV=1
Q97DP6 1.60e-62 1 430 1 440
Phospho-alpha-glucosidase PagL OS=Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787) OX=272562 GN=pagL PE=1 SV=1
P54716 3.69e-61 2 433 4 440
Maltose-6'-phosphate glucosidase OS=Bacillus subtilis (strain 168) OX=224308 GN=glvA PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000059 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002525_03333.