logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002484_03415

You are here: Home > Sequence: MGYG000002484_03415

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Cronobacter malonaticus
Lineage Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Cronobacter; Cronobacter malonaticus
CAZyme ID MGYG000002484_03415
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
349 MGYG000002484_166|CGC1 39368.54 5.1029
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002484 4470595 Isolate Czech Republic Europe
Gene Location Start: 5639;  End: 6688  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002484_03415.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 3 115 4e-19 0.711764705882353

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd02511 Beta4Glucosyltransferase 1.02e-51 1 214 1 211
UDP-glucose LOS-beta-1,4 glucosyltransferase is required for biosynthesis of lipooligosaccharide. UDP-glucose: lipooligosaccharide (LOS) beta-1-4-glucosyltransferase catalyzes the addition of the first residue, glucose, of the lacto-N-neotetrase structure to HepI of the LOS inner core. LOS is the major constituent of the outer leaflet of the outer membrane of gram-positive bacteria. It consists of a short oligosaccharide chain of variable composition (alpha chain) attached to a branched inner core which is lined in turn to lipid A. Beta 1,4 glucosyltransferase is required to attach the alpha chain to the inner core.
TIGR04195 S_glycosyl_SunS 7.05e-21 2 285 59 346
peptide S-glycosyltransferase, SunS family. Members of this family include SunS, the S-glycosyltransferase that transfers a sugar (substrate is variable in reconstitution assays) onto the precursor of the glycopeptide sublancin, which once was thought to be a lantibiotic.
COG0463 WcaA 7.70e-19 1 281 4 271
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam00535 Glycos_transf_2 1.75e-18 3 139 1 146
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd00761 Glyco_tranf_GTA_type 1.90e-14 4 104 1 109
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ALX80369.1 3.84e-259 1 349 1 349
AHB72350.1 3.84e-259 1 349 1 349
AFJ97686.1 1.75e-255 1 349 1 349
QWR80028.1 4.13e-254 1 349 1 349
ALB56682.1 3.39e-253 1 349 1 349

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7MSP_A 5.26e-17 6 225 60 279
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSP_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]
7MSN_A 9.60e-17 6 225 60 279
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSN_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]
7MSK_A 8.91e-14 10 285 76 354
ChainA, Glyco_trans_2-like domain-containing protein [Bacillus thuringiensis serovar andalousiensis BGSC 4AW1],7MSK_B Chain B, Glyco_trans_2-like domain-containing protein [Bacillus thuringiensis serovar andalousiensis BGSC 4AW1]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P42460 6.87e-25 2 256 10 266
TPR repeat-containing protein Synpcc7942_0270 OS=Synechococcus elongatus (strain PCC 7942 / FACHB-805) OX=1140 GN=Synpcc7942_0270 PE=4 SV=1
O31986 5.26e-16 6 225 60 279
SPbeta prophage-derived glycosyltransferase SunS OS=Bacillus subtilis (strain 168) OX=224308 GN=sunS PE=1 SV=1
O64036 5.26e-16 6 225 60 279
Glycosyltransferase SunS OS=Bacillus phage SPbeta OX=66797 GN=sunS PE=3 SV=1
Q54435 2.16e-14 2 143 7 151
Lipopolysaccharide core biosynthesis glycosyltransferase KdtX OS=Serratia marcescens OX=615 GN=kdtX PE=3 SV=1
Q9XC90 2.20e-12 2 145 5 151
Lipopolysaccharide core biosynthesis glycosyltransferase WaaE OS=Klebsiella pneumoniae OX=573 GN=waaE PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000040 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002484_03415.