logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002459_01391

You are here: Home > Sequence: MGYG000002459_01391

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bifidobacterium animalis
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Bifidobacteriaceae; Bifidobacterium; Bifidobacterium animalis
CAZyme ID MGYG000002459_01391
CAZy Family GT2
CAZyme Description Putative mycofactocin biosynthesis glycosyltransferase MftF
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
294 MGYG000002459_1|CGC21 32823.39 7.5421
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002459 1958651 Isolate China Asia
Gene Location Start: 1629775;  End: 1630659  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002459_01391.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 6 172 6.2e-26 0.9823529411764705

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd02525 Succinoglycan_BP_ExoA 6.52e-23 5 237 2 239
ExoA is involved in the biosynthesis of succinoglycan. Succinoglycan Biosynthesis Protein ExoA catalyzes the formation of a beta-1,3 linkage of the second sugar (glucose) of the succinoglycan with the galactose on the lipid carrie. Succinoglycan is an acidic exopolysaccharide that is important for invasion of the nodules. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide units. These units are synthesized on membrane-bound isoprenoid lipid carriers, beginning with galactose followed by seven glucose molecules, and modified by the addition of acetate, succinate, and pyruvate. ExoA is a membrane protein with a transmembrance domain at c-terminus.
pfam00535 Glycos_transf_2 1.85e-21 6 170 1 164
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd04186 GT_2_like_c 2.53e-20 7 211 1 166
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
cd00761 Glyco_tranf_GTA_type 1.02e-19 7 201 1 155
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
COG1216 GT2 2.32e-17 4 209 4 219
Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AJD34500.1 3.22e-212 1 294 1 294
AXM94248.1 3.22e-212 1 294 1 294
AYD78129.1 3.22e-212 1 294 1 294
QIR81421.1 3.22e-212 1 294 1 294
AJD89096.1 3.22e-212 1 294 1 294

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P26403 3.14e-57 5 259 3 259
O antigen biosynthesis rhamnosyltransferase RfbN OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=rfbN PE=3 SV=1
A0QSC1 3.39e-09 5 230 84 302
Pre-mycofactocin glycosyltransferase OS=Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) OX=246196 GN=mftF PE=3 SV=1
P9WMX0 1.46e-08 5 243 84 319
Pre-mycofactocin glycosyltransferase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=mftF PE=3 SV=1
P9WMX1 1.46e-08 5 243 84 319
Pre-mycofactocin glycosyltransferase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=mftF PE=1 SV=1
P39614 2.15e-06 5 180 3 170
Uncharacterized glycosyltransferase YwdF OS=Bacillus subtilis (strain 168) OX=224308 GN=ywdF PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000069 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002459_01391.