logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002437_01347

You are here: Home > Sequence: MGYG000002437_01347

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Blautia hominis
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Blautia; Blautia hominis
CAZyme ID MGYG000002437_01347
CAZy Family CBM48
CAZyme Description 1,4-alpha-glucan branching enzyme GlgB
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1123 MGYG000002437_2|CGC4 125838.9 8.3351
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002437 5878941 Isolate South Korea Asia
Gene Location Start: 172367;  End: 175738  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.18

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 282 582 2.1e-154 0.9966777408637874
CBM48 127 212 2e-18 0.8947368421052632

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
PRK14705 PRK14705 0.0 9 730 503 1220
glycogen branching enzyme; Provisional
cd11322 AmyAc_Glg_BE 0.0 215 617 1 401
Alpha amylase catalytic domain found in the Glycogen branching enzyme (also called 1,4-alpha-glucan branching enzyme). The glycogen branching enzyme catalyzes the third step of glycogen biosynthesis by the cleavage of an alpha-(1,4)-glucosidic linkage and the formation a new alpha-(1,6)-branch by subsequent transfer of cleaved oligosaccharide. They are part of a group called branching enzymes which catalyze the formation of alpha-1,6 branch points in either glycogen or starch. This group includes proteins from bacteria, eukaryotes, and archaea. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
TIGR01515 branching_enzym 0.0 116 729 5 616
alpha-1,4-glucan:alpha-1,4-glucan 6-glycosyltransferase. This model describes the glycogen branching enzymes which are responsible for the transfer of chains of approx. 7 alpha(1--4)-linked glucosyl residues to other similar chains (in new alpha(1--6) linkages) in the biosynthesis of glycogen. This enzyme is a member of the broader amylase family of starch hydrolases which fold as (beta/alpha)8 barrels, the so-called TIM-barrel structure. All of the sequences comprising the seed of this model have been experimentally characterized. This model encompasses both bacterial and eukaryotic species. No archaea have this enzyme, although Aquifex aolicus does. Two species, Bacillus thuringiensis and Clostridium perfringens have two sequences each which are annotated as amylases. These annotations are aparrently in error. GP|18143720 from C. perfringens, for instance, contains the note "674 aa, similar to gp:A14658_1 amylase (1,4-alpha-glucan branching enzyme (EC 2.4.1.18) ) from Bacillus thuringiensis (648 aa); 51.1% identity in 632 aa overlap." A branching enzyme from Porphyromonas gingivales, OMNI|PG1793, appears to be more closely related to the eukaryotic species (across a deep phylogenetic split) and may represent an instance of lateral transfer from this species' host. A sequence from Arabidopsis thaliana, GP|9294564, scores just above trusted, but appears either to contain corrupt sequence or, more likely, to be a pseudogene as some of the conserved catalytic residues common to the alpha amylase family are not conserved here. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
PRK14706 PRK14706 0.0 128 732 27 621
glycogen branching enzyme; Provisional
PRK12313 PRK12313 0.0 107 738 3 633
1,4-alpha-glucan branching protein GlgB.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QJU14853.1 0.0 1 862 1 859
QQQ92601.1 0.0 1 862 1 859
ASU27851.1 0.0 1 862 1 859
ANU75041.1 0.0 1 862 1 859
QBE99030.1 0.0 1 807 1 809

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5GQW_A 1.44e-247 13 742 29 785
Crystalstructure of branching enzyme W610N mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142],5GQX_A Crystal structure of branching enzyme W610N mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142]
5GR5_A 2.03e-247 13 742 29 785
Crystalstructure of branching enzyme W610A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]
5GQZ_A 2.87e-247 13 742 29 785
Crystalstructure of branching enzyme Y500A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]
5GQU_A 4.06e-247 13 742 29 785
Crystalstructure of branching enzyme from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142],5GQV_A Crystal structure of branching enzyme from Cyanothece sp. ATCC 51142 in complex with maltohexaose [Crocosphaera subtropica ATCC 51142],5GQY_A Crystal structure of branching enzyme from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142]
5GR2_A 5.73e-247 13 742 29 785
Crystalstructure of branching enzyme L541A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142],5GR4_A Crystal structure of branching enzyme L541A mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q8DLB8 1.82e-263 13 736 7 754
1,4-alpha-glucan branching enzyme GlgB OS=Thermosynechococcus vestitus (strain IAM M-273 / NIES-2133 / BP-1) OX=197221 GN=glgB PE=3 SV=1
Q7NL20 1.23e-254 13 736 9 732
1,4-alpha-glucan branching enzyme GlgB OS=Gloeobacter violaceus (strain ATCC 29082 / PCC 7421) OX=251221 GN=glgB PE=3 SV=1
Q8YYX9 2.29e-252 13 743 10 761
1,4-alpha-glucan branching enzyme GlgB OS=Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576) OX=103690 GN=glgB PE=3 SV=1
Q3M473 3.23e-252 13 744 10 762
1,4-alpha-glucan branching enzyme GlgB OS=Trichormus variabilis (strain ATCC 29413 / PCC 7937) OX=240292 GN=glgB PE=3 SV=1
Q5N4W5 1.03e-250 13 729 16 756
1,4-alpha-glucan branching enzyme GlgB OS=Synechococcus sp. (strain ATCC 27144 / PCC 6301 / SAUG 1402/1) OX=269084 GN=glgB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000049 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002437_01347.