Species | Clostridium_F botulinum | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Clostridiales; Clostridiaceae; Clostridium_F; Clostridium_F botulinum | |||||||||||
CAZyme ID | MGYG000002355_02946 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | D-inositol-3-phosphate glycosyltransferase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 2735799; End: 2737025 Strand: - |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03794 | GT4_WbuB-like | 1.18e-136 | 2 | 399 | 1 | 391 | Escherichia coli WbuB and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. WbuB in E. coli is involved in the biosynthesis of the O26 O-antigen. It has been proposed to function as an N-acetyl-L-fucosamine (L-FucNAc) transferase. |
PRK10307 | PRK10307 | 2.33e-54 | 23 | 405 | 23 | 408 | colanic acid biosynthesis glycosyltransferase WcaI. |
cd03801 | GT4_PimA-like | 1.38e-40 | 2 | 402 | 1 | 365 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
COG0438 | RfaB | 2.46e-37 | 1 | 407 | 1 | 379 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
cd03814 | GT4-like | 8.65e-26 | 2 | 403 | 1 | 365 | glycosyltransferase family 4 proteins. This family is most closely related to the GT4 family of glycosyltransferases and includes a sequence annotated as alpha-D-mannose-alpha(1-6)phosphatidyl myo-inositol monomannoside transferase from Bacillus halodurans. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria and eukaryotes. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
AUM92585.1 | 4.11e-293 | 1 | 408 | 1 | 408 |
APH20322.1 | 4.11e-293 | 1 | 408 | 1 | 408 |
ACA44053.1 | 4.11e-293 | 1 | 408 | 1 | 408 |
ABS40350.1 | 1.38e-291 | 1 | 408 | 1 | 408 |
ADG00746.1 | 1.38e-291 | 1 | 408 | 1 | 408 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
4WAC_A | 1.11e-07 | 240 | 401 | 338 | 495 | CrystalStructure of TarM [Staphylococcus aureus],4WAD_A Crystal Structure of TarM with UDP-GlcNAc [Staphylococcus aureus] |
4X6L_A | 1.11e-07 | 240 | 401 | 333 | 490 | ChainA, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_C Chain C, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_D Chain D, TarM [Staphylococcus aureus subsp. aureus 21178],4X7P_A Chain A, TarM [Staphylococcus aureus subsp. aureus 21178],4X7P_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178] |
4X7M_A | 1.11e-07 | 240 | 401 | 333 | 490 | ChainA, TarM [Staphylococcus aureus subsp. aureus 21178],4X7M_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178],4X7R_A Chain A, TarM [Staphylococcus aureus subsp. aureus 21178],4X7R_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178] |
7MI0_A | 2.18e-07 | 15 | 397 | 33 | 384 | ChainA, Glycosyltransferase [Rickettsia africae ESF-5] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P32057 | 7.48e-23 | 1 | 400 | 1 | 403 | Putative colanic acid biosynthesis glycosyl transferase WcaI OS=Escherichia coli (strain K12) OX=83333 GN=wcaI PE=4 SV=1 |
Q58469 | 2.74e-14 | 1 | 407 | 4 | 392 | Uncharacterized glycosyltransferase MJ1069 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1069 PE=3 SV=1 |
Q65CC7 | 2.76e-13 | 162 | 390 | 141 | 369 | Alpha-D-kanosaminyltransferase OS=Streptomyces kanamyceticus OX=1967 GN=kanE PE=1 SV=1 |
A0A0H2WWV6 | 6.05e-07 | 240 | 401 | 333 | 490 | Poly(ribitol-phosphate) alpha-N-acetylglucosaminyltransferase OS=Staphylococcus aureus (strain COL) OX=93062 GN=tarM PE=1 SV=1 |
Q8KIU8 | 9.04e-07 | 107 | 364 | 96 | 355 | Probable glycosyltransferase WbjE OS=Pseudomonas aeruginosa OX=287 GN=wbjE PE=3 SV=2 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000062 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.