logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002304_01559

You are here: Home > Sequence: MGYG000002304_01559

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA7182 sp003481535
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; UBA7182; UBA7182 sp003481535
CAZyme ID MGYG000002304_01559
CAZy Family GT4
CAZyme Description Putative glycosyltransferase EpsF
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
370 MGYG000002304_3|CGC4 42449.36 8.922
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002304 3566085 Isolate China Asia
Gene Location Start: 235712;  End: 236824  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002304_01559.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 202 307 7.4e-28 0.66875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03812 GT4_CapH-like 5.01e-86 35 353 32 341
capsular polysaccharide biosynthesis glycosyltransferase CapH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. capH in Staphylococcus aureus has been shown to be required for the biosynthesis of the type 1 capsular polysaccharide (CP1).
cd03807 GT4_WbnK-like 4.79e-46 4 307 1 295
Shigella dysenteriae WbnK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. WbnK in Shigella dysenteriae has been shown to be involved in the type 7 O-antigen biosynthesis.
cd03808 GT4_CapM-like 1.48e-43 8 307 6 294
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides.
cd03801 GT4_PimA-like 1.06e-40 66 370 67 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03811 GT4_GT28_WabH-like 7.89e-37 41 307 43 293
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
APG72353.1 3.79e-142 1 369 1 370
QPB65105.1 5.37e-142 1 369 1 370
AXI15731.1 5.37e-142 1 369 1 370
AQR54357.1 1.08e-141 1 369 1 370
APG68004.1 1.08e-141 1 369 1 370

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3OKA_A 2.74e-14 77 304 76 307
Crystalstructure of Corynebacterium glutamicum PimB' in complex with GDP-Man (triclinic crystal form) [Corynebacterium glutamicum],3OKA_B Crystal structure of Corynebacterium glutamicum PimB' in complex with GDP-Man (triclinic crystal form) [Corynebacterium glutamicum]
3OKC_A 2.92e-14 77 304 76 307
Crystalstructure of Corynebacterium glutamicum PimB' bound to GDP (orthorhombic crystal form) [Corynebacterium glutamicum],3OKP_A Crystal structure of Corynebacterium glutamicum PimB' bound to GDP-Man (orthorhombic crystal form) [Corynebacterium glutamicum]
6N1X_A 1.26e-11 78 366 79 362
ChainA, Glycosyltransferase [Staphylococcus aureus subsp. aureus CN1]
6D9T_A 1.38e-11 78 366 95 378
BshAfrom Staphylococcus aureus complexed with UDP [Staphylococcus aureus]
5D00_A 1.30e-10 78 304 80 302
Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P71055 8.00e-49 50 369 52 374
Putative glycosyltransferase EpsF OS=Bacillus subtilis (strain 168) OX=224308 GN=epsF PE=2 SV=1
Q59002 1.33e-18 165 306 168 313
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
Q04975 7.68e-15 13 304 197 500
Vi polysaccharide biosynthesis protein VipC/TviE OS=Salmonella typhi OX=90370 GN=vipC PE=4 SV=2
O32272 3.57e-14 89 370 110 382
Putative teichuronic acid biosynthesis glycosyltransferase TuaC OS=Bacillus subtilis (strain 168) OX=224308 GN=tuaC PE=2 SV=1
A0R043 4.62e-14 78 304 73 303
GDP-mannose-dependent alpha-(1-6)-phosphatidylinositol monomannoside mannosyltransferase OS=Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) OX=246196 GN=pimB PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000041 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002304_01559.