logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001961_00656

You are here: Home > Sequence: MGYG000001961_00656

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Frisingicoccus sp900753685
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Frisingicoccus; Frisingicoccus sp900753685
CAZyme ID MGYG000001961_00656
CAZy Family GT2
CAZyme Description N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
252 MGYG000001961_16|CGC1 29449.05 10.1279
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001961 2208468 MAG Denmark Europe
Gene Location Start: 21201;  End: 21959  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001961_00656.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 6 231 2.6e-23 0.9391304347826087

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04186 GT_2_like_c 1.96e-57 10 222 3 164
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
COG1216 GT2 3.35e-46 5 251 4 249
Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism].
cd06423 CESA_like 2.06e-19 10 191 3 174
CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan.
cd00761 Glyco_tranf_GTA_type 2.24e-19 10 215 3 156
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam00535 Glycos_transf_2 2.83e-17 7 183 1 164
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CAB1238943.1 1.87e-71 7 250 5 252
AYH41454.1 1.09e-65 3 250 2 251
QUA54184.1 1.63e-59 6 249 5 252
AGS51998.1 2.31e-57 6 249 1 246
QTE70905.1 1.19e-56 6 249 5 252

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7MSP_A 5.86e-08 5 125 55 174
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSP_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]
7MSN_A 6.88e-08 5 125 55 174
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSN_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P9WMY2 7.82e-21 11 222 10 235
N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=wbbL PE=3 SV=2
P9WMY3 7.82e-21 11 222 10 235
N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=wbbL PE=1 SV=2
O31986 3.77e-07 5 125 55 174
SPbeta prophage-derived glycosyltransferase SunS OS=Bacillus subtilis (strain 168) OX=224308 GN=sunS PE=1 SV=1
O64036 3.77e-07 5 125 55 174
Glycosyltransferase SunS OS=Bacillus phage SPbeta OX=66797 GN=sunS PE=3 SV=1
D4GU63 9.64e-07 36 239 45 240
Low-salt glycan biosynthesis hexosyltransferase Agl10 OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=agl10 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000040 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001961_00656.