logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001681_00065

You are here: Home > Sequence: MGYG000001681_00065

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Ruminococcus sp900761275
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Ruminococcaceae; Ruminococcus; Ruminococcus sp900761275
CAZyme ID MGYG000001681_00065
CAZy Family CBM35
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1023 MGYG000001681_3|CGC1 111808.82 4.377
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001681 2557345 MAG United States North America
Gene Location Start: 7923;  End: 10994  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001681_00065.

CAZyme Signature Domains help

Family Start End Evalue family coverage
PL11 424 1019 6.6e-223 0.9537953795379538
CBM35 286 408 5.4e-23 0.9915966386554622

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd10318 RGL11 0.0 426 1004 1 564
Rhamnogalacturonan lyase of the polysaccharide lyase family 11. The rhamnogalacturonan lyase of the polysaccharide lyase family 11 (RGL11) cleaves glycoside bonds in polygalacturonan as well as RG (rhamnogalacturonan) type-I through a beta-elimination reaction. Functionally characterized members of this family, YesW and YesX from Bacillus subtilis, cleave glycoside bonds between rhamnose and galacturonic acid residues in the RG-I region of plant cell wall pectin. YesW and YesX work synergistically, with YesW cleaving the glycoside bond of the RG chain endolytically, and YesX converting the resultant oligosaccharides through an exotype reaction. This domain is sometimes found in architectures with non-catalytic carbohydrate-binding modules (CBMs). There are two types of RG lyases, which both cleave the alpha-1,4 bonds of the RG-I main chain through a beta-elimination reaction, but belong to two structurally unrelated polysaccharide lyase (PL) families, 4 and 11.
cd04082 CBM35_pectate_lyase-like 3.33e-47 285 408 2 124
Carbohydrate Binding Module family 35 (CBM35), pectate lyase-like; appended mainly to enzymes that bind mannan (Man), xylan, glucuronic acid (GlcA) and possibly glucans. This family includes carbohydrate binding module family 35 (CBM35) domains that are non-catalytic carbohydrate binding domains that are appended mainly to enzymes that bind mannan (Man), xylan, glucuronic acid (GlcA) and possibly glucans. Included in this family are CBM35s of pectate lyases, including pectate lyase 10A from Cellvibrio japonicas, these enzymes release delta-4,5-anhydrogalaturonic acid (delta4,5-GalA) from pectin, thus identifying a signature molecule for plant cell wall degradation. CBM35s are unique in that they display conserved specificity through extensive sequence similarity but divergent function through their appended catalytic modules. They are known to bind alpha-D-galactose (Gal), mannan (Man), xylan, glucuronic acid (GlcA), a beta-polymer of mannose, and possibly glucans, forming four subfamilies based on general ligand specificities (galacto, urono, manno, and gluco configurations). In contrast to most CBMs that are generally rigid proteins, CBM35 undergoes significant conformational change upon ligand binding. Some CBM35s bind their ligands in a calcium-dependent manner, especially those binding uronic acids.
pfam18370 RGI_lyase 3.00e-21 424 499 1 75
Rhamnogalacturonan I lyases beta-sheet domain. This is the beta-sheet domain found in rhamnogalacturonan (RG) lyases, which are responsible for an initial cleavage of the RG type I (RG-I) region of plant cell wall pectin. Polysaccharide lyase family 11 carrying this domain, such as YesW (EC:4.2.2.23) and YesX (EC:4.2.2.24), cleave glycoside bonds between rhamnose and galacturonic acid residues in RG-I through a beta-elimination reaction. Other family members carrying this domain are hemagglutinin A, lysine gingipain (Kgp) and Chitinase C (EC:3.2.1.14).
cd04083 CBM35_Lmo2446-like 1.98e-18 285 408 2 125
Carbohydrate Binding Module 35 (CBM35) domains similar to Lmo2446. This family includes carbohydrate binding module 35 (CBM35) domains that are appended to several carbohydrate binding enzymes. Some CBM35 domains belonging to this family are appended to glycoside hydrolase (GH) family domains, including glycoside hydrolase family 31 (GH31), for example the CBM35 domain of Lmo2446, an uncharacterized protein from Listeria monocytogenes EGD-e. These CBM35s are non-catalytic carbohydrate binding domains that facilitate the strong binding of the GH catalytic modules with their dedicated, insoluble substrates. GH31 has a wide range of hydrolytic activities such as alpha-glucosidase, alpha-xylosidase, 6-alpha-glucosyltransferase, or alpha-1,4-glucan lyase, cleaving a terminal carbohydrate moiety from a substrate that may be a starch or a glycoprotein. Most characterized GH31 enzymes are alpha-glucosidases.
cd02795 CBM6-CBM35-CBM36_like 1.96e-14 285 408 1 124
Carbohydrate Binding Module 6 (CBM6) and CBM35_like superfamily. Carbohydrate binding module family 6 (CBM6, family 6 CBM), also known as cellulose binding domain family VI (CBD VI), and related CBMs (CBM35 and CBM36). These are non-catalytic carbohydrate binding domains found in a range of enzymes that display activities against a diverse range of carbohydrate targets, including mannan, xylan, beta-glucans, cellulose, agarose, and arabinans. These domains facilitate the strong binding of the appended catalytic modules to their dedicated, insoluble substrates. Many of these CBMs are associated with glycoside hydrolase (GH) domains. CBM6 is an unusual CBM as it represents a chimera of two distinct binding sites with different modes of binding: binding site I within the loop regions and binding site II on the concave face of the beta-sandwich fold. CBM36s are calcium-dependent xylan binding domains. CBM35s display conserved specificity through extensive sequence similarity, but divergent function through their appended catalytic modules. This alignment model also contains the C-terminal domains of bacterial insecticidal toxins, where they may be involved in determining insect specificity through carbohydrate binding functionality.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CBL17717.1 0.0 282 1021 116 848
ADU75030.1 1.12e-229 285 1022 110 819
ALX08998.1 1.12e-229 285 1022 110 819
ANV76748.1 1.12e-229 285 1022 110 819
ABN51485.1 3.17e-229 285 1022 110 819

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4CAG_A 2.09e-183 420 1021 5 589
Bacilluslicheniformis Rhamnogalacturonan Lyase PL11 [Bacillus licheniformis]
2Z8R_A 1.84e-176 422 1006 1 568
Crystalstructure of rhamnogalacturonan lyase YesW at 1.40 A resolution [Bacillus subtilis],2Z8R_B Crystal structure of rhamnogalacturonan lyase YesW at 1.40 A resolution [Bacillus subtilis],2Z8S_A Crystal structure of rhamnogalacturonan lyase YesW complexed with digalacturonic acid [Bacillus subtilis],2Z8S_B Crystal structure of rhamnogalacturonan lyase YesW complexed with digalacturonic acid [Bacillus subtilis],2ZUX_A Crystal structure of rhamnogalacturonan lyase YesW complexed with rhamnose [Bacillus subtilis],2ZUX_B Crystal structure of rhamnogalacturonan lyase YesW complexed with rhamnose [Bacillus subtilis]
2ZUY_A 5.08e-172 424 1006 6 589
Crystalstructure of exotype rhamnogalacturonan lyase YesX [Bacillus subtilis]
2W47_A 6.66e-35 286 416 7 136
ChainA, Lipolytic Enzyme, G-d-s-l [Acetivibrio thermocellus]
2W1W_A 7.08e-35 286 416 7 136
ChainA, LIPOLYTIC ENZYME, G-D-S-L [Acetivibrio thermocellus],2W1W_B Chain B, LIPOLYTIC ENZYME, G-D-S-L [Acetivibrio thermocellus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O31526 4.72e-176 416 1006 32 605
Rhamnogalacturonan endolyase YesW OS=Bacillus subtilis (strain 168) OX=224308 GN=yesW PE=1 SV=1
O31527 2.14e-171 424 1006 6 589
Rhamnogalacturonan exolyase YesX OS=Bacillus subtilis (strain 168) OX=224308 GN=yesX PE=1 SV=1
Q56F26 3.46e-24 286 408 911 1032
Exo-beta-D-glucosaminidase OS=Amycolatopsis orientalis OX=31958 GN=csxA PE=1 SV=2
P23030 2.71e-14 296 408 176 288
Endo-1,4-beta-xylanase B OS=Cellvibrio japonicus (strain Ueda107) OX=498211 GN=xynB PE=1 SV=2
P23031 2.82e-14 296 408 176 288
Alpha-L-arabinofuranosidase C OS=Cellvibrio japonicus (strain Ueda107) OX=498211 GN=xynC PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.001186 0.997511 0.000419 0.000323 0.000272 0.000234

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001681_00065.