logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001602_00152

You are here: Home > Sequence: MGYG000001602_00152

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Blautia sp900547685
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Blautia; Blautia sp900547685
CAZyme ID MGYG000001602_00152
CAZy Family GH0
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
797 MGYG000001602_2|CGC2 92537.5 4.9748
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001602 2582611 MAG China Asia
Gene Location Start: 74367;  End: 76760  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001602_00152.

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd10791 GH38N_AMII_like_1 3.13e-73 7 267 1 253
N-terminal catalytic domain of mainly uncharacterized eukaryotic proteins similar to alpha-mannosidases; glycoside hydrolase family 38 (GH38). The subfamily of mainly uncharacterized eukaryotic proteins shows sequence homology with class II alpha-mannosidases (AlphaAMIIs). AlphaAMIIs possess a-1,3, a-1,6, and a-1,2 hydrolytic activity, and catalyze the degradation of N-linked oligosaccharides. The N-terminal catalytic domain of alphaMII adopts a structure consisting of parallel 7-stranded beta/alpha barrel. This subfamily belongs to the GH38 family of retaining glycosyl hydrolases, which employ a two-step mechanism involving the formation of a covalent glycosyl enzyme complex; two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst.
PLN02701 PLN02701 5.95e-05 4 84 39 117
alpha-mannosidase
cd10786 GH38N_AMII_like 9.97e-05 7 192 1 186
N-terminal catalytic domain of class II alpha-mannosidases and similar proteins; glycoside hydrolase family 38 (GH38). Alpha-mannosidases (EC 3.2.1.24) are extensively found in eukaryotes and play important roles in the processing of newly formed N-glycans and in degradation of mature glycoproteins. A deficiency of this enzyme causes the lysosomal storage disease alpha-mannosidosis. Many bacterial and archaeal species also possess putative alpha-mannosidases, but their activity and specificity is largely unknown. Based on different functional characteristics and sequence homology, alpha-mannosidases have been organized into two classes (class I, belonging to glycoside hydrolase family 47, and class II, belonging to glycoside hydrolase family 38). Members of this family corresponds to class II alpha-mannosidases (alphaMII), which contain intermediate Golgi alpha-mannosidases II, acidic lysosomal alpha-mannosidases, animal sperm and epididymal alpha -mannosidases, neutral ER/cytosolic alpha-mannosidases, and some putative prokaryotic alpha-mannosidases. AlphaMII possess a-1,3, a-1,6, and a-1,2 hydrolytic activity, and catalyzes the degradation of N-linked oligosaccharides. The N-terminal catalytic domain of alphaMII adopts a structure consisting of parallel 7-stranded beta/alpha barrel. Members in this family are retaining glycosyl hydrolases of family GH38 that employs a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst.
cd00451 GH38N_AMII_euk 0.002 6 84 1 78
N-terminal catalytic domain of eukaryotic class II alpha-mannosidases; glycoside hydrolase family 38 (GH38). The family corresponds to a group of eukaryotic class II alpha-mannosidases (AlphaMII), which contain Golgi alpha-mannosidases II (GMII), the major broad specificity lysosomal alpha-mannosidases (LAM, MAN2B1), the noval core-specific lysosomal alpha 1,6-mannosidases (Epman, MAN2B2), and similar proteins. GMII catalyzes the hydrolysis of the terminal both alpha-1,3-linked and alpha-1,6-linked mannoses from the high-mannose oligosaccharide GlcNAc(Man)5(GlcNAc)2 to yield GlcNAc(Man)3(GlcNAc)2 (GlcNAc, N-acetylglucosmine), which is the committed step of complex N-glycan synthesis. LAM is a broad specificity exoglycosidase hydrolyzing all known alpha 1,2-, alpha 1,3-, and alpha 1,6-mannosidic linkages from numerous high mannose type oligosaccharides. Different from LAM, Epman can efficiently cleave only the alpha 1,6-linked mannose residue from (Man)3GlcNAc, but not (Man)3(GlcNAc)2 or other larger high mannose oligosaccharides, in the core of N-linked glycans. Members in this family are retaining glycosyl hydrolases of family GH38 that employs a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst.
cd10809 GH38N_AMII_GMII_SfManIII_like 0.002 8 84 4 79
N-terminal catalytic domain of Golgi alpha-mannosidase II, Spodoptera frugiperda Sf9 alpha-mannosidase III, and similar proteins; glycoside hydrolase family 38 (GH38). This subfamily is represented by Golgi alpha-mannosidase II (GMII, also known as mannosyl-oligosaccharide 1,3- 1,6-alpha mannosidase, EC 3.2.1.114, Man2A1), a monomeric, membrane-anchored class II alpha-mannosidase existing in the Golgi apparatus of eukaryotes. GMII plays a key role in the N-glycosylation pathway. It catalyzes the hydrolysis of the terminal both alpha-1,3-linked and alpha-1,6-linked mannoses from the high-mannose oligosaccharide GlcNAc(Man)5(GlcNAc)2 to yield GlcNAc(Man)3(GlcNAc)2(GlcNAc, N-acetylglucosmine), which is the committed step of complex N-glycan synthesis. GMII is activated by zinc or cobalt ions and is strongly inhibited by swainsonine. Inhibition of GMII provides a route to block cancer-induced changes in cell surface oligosaccharide structures. GMII has a pH optimum of 5.5-6.0, which is intermediate between those of acidic (lysosomal alpha-mannosidase) and neutral (ER/cytosolic alpha-mannosidase) enzymes. GMII is a retaining glycosyl hydrolase of family GH38 that employs a two-step mechanism involving the formation of a covalent glycosyl enzyme complex; two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. This subfamily also includes human alpha-mannosidase 2x (MX, also known as mannosyl-oligosaccharide 1,3- 1,6-alpha mannosidase, EC 3.2.1.114, Man2A2). MX is enzymatically and functionally very similar to GMII, and is thought to also function in the N-glycosylation pathway. Also found in this subfamily is class II alpha-mannosidase encoded by Spodoptera frugiperda Sf9 cell. This alpha-mannosidase is an integral membrane glycoprotein localized in the Golgi apparatus. It shows high sequence homology with mammalian Golgi alpha-mannosidase II(GMII). It can hydrolyze p-nitrophenyl alpha-D-mannopyranoside (pNP-alpha-Man), and it is inhibited by swainsonine. However, the Sf9 enzyme is stimulated by cobalt and can hydrolyze (Man)5(GlcNAc)2 to (Man)3(GlcNAc)2, but it cannot hydrolyze GlcNAc(Man)5(GlcNAc)2, which is distinct from that of GMII. Thus, this enzyme has been designated as Sf9 alpha-mannosidase III (SfManIII). It probably functions in an alternate N-glycan processing pathway in Sf9 cells.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QUI22181.1 0.0 1 797 1 799
QUH31286.1 2.23e-290 7 789 7 787
QUL56909.1 4.48e-170 7 790 8 806
AIQ42834.1 1.10e-167 8 790 9 806
ASN05648.1 5.02e-167 8 786 7 801

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      help

has no Swissprot hit.

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000067 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001602_00152.