logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001542_00840

You are here: Home > Sequence: MGYG000001542_00840

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Paenibacillus_A sp900069005
Lineage Bacteria; Firmicutes; Bacilli; Paenibacillales; Paenibacillaceae; Paenibacillus_A; Paenibacillus_A sp900069005
CAZyme ID MGYG000001542_00840
CAZy Family GH4
CAZyme Description putative 6-phospho-beta-glucosidase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
432 MGYG000001542_18|CGC1 48791.39 5.9889
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001542 5846629 Isolate not provided not provided
Gene Location Start: 63508;  End: 64806  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001542_00840.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH4 6 183 5.7e-74 0.9832402234636871

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd05296 GH4_P_beta_glucosidase 0.0 5 428 1 419
Glycoside Hydrolases Family 4; Phospho-beta-glucosidase. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases such as the phospho-beta-glucosidases. Other organisms (such as archaea and Thermotoga maritima ) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. The 6-phospho-beta-glucosidase from Thermotoga maritima hydrolylzes cellobiose 6-phosphate (6P) into glucose-6P and glucose, in an NAD+ and Mn2+ dependent fashion. The Escherichia coli 6-phospho-beta-glucosidase (also called celF) hydrolyzes a variety of phospho-beta-glucosides including cellobiose-6P, salicin-6P, arbutin-6P, and gentobiose-6P. Phospho-beta-glucosidases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
COG1486 CelF 4.78e-176 4 432 3 440
Alpha-galactosidase/6-phospho-beta-glucosidase, family 4 of glycosyl hydrolase [Carbohydrate transport and metabolism].
cd05197 GH4_glycoside_hydrolases 1.74e-146 5 421 1 423
Glycoside Hydrases Family 4. Glycoside hydrolases cleave glycosidic bonds to release smaller sugars from oligo- or polysaccharides. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). After translocation, these phospho-disaccharides may be hydrolyzed by GH4 glycoside hydrolases. Other organisms (such as archaea and Thermotoga maritima) lack the PEP-PTS system, but have several enzymes normally associated with the PEP-PTS operon. GH4 family members include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. They require two cofactors, NAD+ and a divalent metal (Mn2+, Ni2+, Mg2+), for activity. Some also require reducing conditions. GH4 glycoside hydrolases are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
cd05298 GH4_GlvA_pagL_like 4.05e-88 6 432 2 437
Glycoside Hydrolases Family 4; GlvA- and pagL-like glycosidases. Bacillus subtilis GlvA and Clostridium acetobutylicum pagL are 6-phospho-alpha-glucosidase, catalyzing the hydrolysis of alpha-glucopyranoside bonds to release glucose from oligosaccharides. The substrate specificities of other members of this subgroup are unknown. Some bacteria simultaneously translocate and phosphorylate disaccharides via the phosphoenolpyruvate-dependent phosphotransferase system (PEP_PTS). After translocation, these phospho-disaccharides may be hydrolyzed by the GH4 glycoside hydrolases, which include 6-phospho-beta-glucosidases, 6-phospho-alpha-glucosidases, alpha-glucosidases/alpha-glucuronidases (only from Thermotoga), and alpha-galactosidases. Members of this subfamily are part of the NAD(P)-binding Rossmann fold superfamily, which includes a wide variety of protein families including the NAD(P)-binding domains of alcohol dehydrogenases, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate dehydrogenases, formate/glycerate dehydrogenases, siroheme synthases, 6-phosphogluconate dehydrogenases, aminoacid dehydrogenases, repressor rex, and NAD-binding potassium channel domains, among others.
cd05297 GH4_alpha_glucosidase_galactosidase 4.91e-88 5 424 1 423
Glycoside Hydrolases Family 4; Alpha-glucosidases and alpha-galactosidases. linked to 3D####ucture

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AZS18006.1 8.18e-303 1 432 1 432
QUL55959.1 7.62e-276 1 432 1 432
AIQ43404.1 2.54e-274 1 432 1 432
AIQ32076.1 7.28e-274 1 432 1 432
AIQ37624.1 1.03e-273 1 432 1 432

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5C3M_A 2.59e-168 1 431 1 437
Crystalstructure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_B Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_C Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5C3M_D Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus [Geobacillus stearothermophilus]
1S6Y_A 7.72e-161 5 431 8 440
2.3Acrystal structure of phospho-beta-glucosidase [Geobacillus stearothermophilus]
1UP7_A 2.28e-83 5 430 3 416
Structureof the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_B Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_C Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_D Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_E Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_F Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_G Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8],1UP7_H Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate [Thermotoga maritima MSB8]
1UP4_A 1.88e-81 6 430 2 414
Structureof the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_B Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_C Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_D Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_E Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_F Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_G Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8],1UP4_H Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form [Thermotoga maritima MSB8]
1UP6_A 1.93e-81 6 430 3 415
Structureof the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_B Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_C Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_D Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_E Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_F Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_G Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8],1UP6_H Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate [Thermotoga maritima MSB8]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P46320 1.71e-162 1 431 1 436
Probable 6-phospho-beta-glucosidase OS=Bacillus subtilis (strain 168) OX=224308 GN=licH PE=2 SV=1
P17411 2.86e-127 1 431 1 439
6-phospho-beta-glucosidase OS=Escherichia coli (strain K12) OX=83333 GN=chbF PE=1 SV=4
Q9X108 1.18e-82 5 430 1 414
6-phospho-beta-glucosidase BglT OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=bglT PE=1 SV=1
Q97LM4 9.75e-56 7 429 6 438
Maltose-6'-phosphate glucosidase MalH OS=Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787) OX=272562 GN=malH PE=1 SV=1
P54716 2.50e-53 2 429 3 439
Maltose-6'-phosphate glucosidase OS=Bacillus subtilis (strain 168) OX=224308 GN=glvA PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000040 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001542_00840.