Species | Paenibacillus_A ihumii | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes; Bacilli; Paenibacillales; Paenibacillaceae; Paenibacillus_A; Paenibacillus_A ihumii | |||||||||||
CAZyme ID | MGYG000001514_03669 | |||||||||||
CAZy Family | GT2 | |||||||||||
CAZyme Description | Tyrocidine synthase 2 | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 2369378; End: 2380336 Strand: - |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd17655 | A_NRPS_Bac | 0.0 | 2610 | 3091 | 1 | 490 | bacitracin synthetase and related proteins. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetases 1, 2, and 3 (BA1, also known as ATP-dependent cysteine adenylase or cysteine activase, BA2, also known as ATP-dependent lysine adenylase or lysine activase, and BA3, also known as ATP-dependent isoleucine adenylase or isoleucine activase) in Bacilli. Bacitracin is a mixture of related cyclic peptides used as a polypeptide antibiotic. This family also includes gramicidin synthetase 1 involved in synthesis of the cyclic peptide antibiotic gramicidin S via activation of phenylalanine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. |
cd17655 | A_NRPS_Bac | 0.0 | 471 | 1000 | 1 | 490 | bacitracin synthetase and related proteins. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetases 1, 2, and 3 (BA1, also known as ATP-dependent cysteine adenylase or cysteine activase, BA2, also known as ATP-dependent lysine adenylase or lysine activase, and BA3, also known as ATP-dependent isoleucine adenylase or isoleucine activase) in Bacilli. Bacitracin is a mixture of related cyclic peptides used as a polypeptide antibiotic. This family also includes gramicidin synthetase 1 involved in synthesis of the cyclic peptide antibiotic gramicidin S via activation of phenylalanine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. |
cd17655 | A_NRPS_Bac | 0.0 | 1555 | 2057 | 1 | 490 | bacitracin synthetase and related proteins. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetases 1, 2, and 3 (BA1, also known as ATP-dependent cysteine adenylase or cysteine activase, BA2, also known as ATP-dependent lysine adenylase or lysine activase, and BA3, also known as ATP-dependent isoleucine adenylase or isoleucine activase) in Bacilli. Bacitracin is a mixture of related cyclic peptides used as a polypeptide antibiotic. This family also includes gramicidin synthetase 1 involved in synthesis of the cyclic peptide antibiotic gramicidin S via activation of phenylalanine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. |
cd19531 | LCL_NRPS-like | 0.0 | 2158 | 2566 | 1 | 420 | LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar domains including the C-domain of SgcC5, a free-standing NRPS with both ester- and amide- bond forming activity. LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Streptomyces globisporus SgcC5 is a free-standing NRPS condensation enzyme (rather than a modular NRPS), which catalyzes the condensation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1phenyl-1,2-ethanediol, forming an ester bond, during the synthesis of the chromoprotein enediyne antitumor antibiotic C-1027. It has some acceptor substrate promiscuity as it has been shown to also catalyze the formation of an amide bond between SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and a mimic of the enediyne core acceptor substrate having an amine at its C-2 position. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains. |
PRK12316 | PRK12316 | 0.0 | 2150 | 3182 | 4094 | 5147 | peptide synthase; Provisional |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QND46664.1 | 0.0 | 545 | 3172 | 1 | 2663 |
BAY90071.1 | 1.37e-306 | 187 | 3172 | 306 | 3284 |
BAZ00088.1 | 1.50e-299 | 179 | 3172 | 299 | 3293 |
BAZ75991.1 | 1.50e-299 | 179 | 3172 | 299 | 3293 |
BAY30132.1 | 1.54e-299 | 179 | 3172 | 299 | 3295 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6MFZ_A | 0.0 | 1525 | 3171 | 177 | 1797 | Crystalstructure of dimodular LgrA in a condensation state [Brevibacillus parabrevis],6MFZ_B Crystal structure of dimodular LgrA in a condensation state [Brevibacillus parabrevis] |
6MFY_A | 0.0 | 464 | 2061 | 202 | 1720 | Crystalstructure of a 5-domain construct of LgrA in the substrate donation state [Brevibacillus parabrevis],6MG0_A Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis],6MG0_B Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis] |
2VSQ_A | 4.07e-212 | 12 | 1082 | 15 | 1039 | Structureof surfactin A synthetase C (SrfA-C), a nonribosomal peptide synthetase termination module [Bacillus subtilis] |
6MFW_A | 3.37e-208 | 464 | 1538 | 202 | 1210 | Crystalstructure of a 4-domain construct of LgrA in the substrate donation state [Brevibacillus parabrevis] |
6MFX_A | 8.43e-208 | 464 | 1538 | 202 | 1210 | Crystalstructure of a 4-domain construct of a mutant of LgrA in the substrate donation state [Brevibacillus parabrevis] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P39845 | 0.0 | 1102 | 3651 | 6 | 2561 | Plipastatin synthase subunit A OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsA PE=1 SV=2 |
P94459 | 0.0 | 5 | 3648 | 6 | 3600 | Plipastatin synthase subunit D OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsD PE=1 SV=2 |
P39847 | 0.0 | 5 | 2438 | 6 | 2381 | Plipastatin synthase subunit C OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsC PE=1 SV=2 |
P39846 | 0.0 | 1099 | 3651 | 8 | 2560 | Plipastatin synthase subunit B OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsB PE=1 SV=1 |
Q04747 | 0.0 | 1 | 3649 | 1 | 3579 | Surfactin synthase subunit 2 OS=Bacillus subtilis (strain 168) OX=224308 GN=srfAB PE=1 SV=3 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000054 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.