Species | Clostridium_L amazonitimonense | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Clostridiales; Clostridiaceae; Clostridium_L; Clostridium_L amazonitimonense | |||||||||||
CAZyme ID | MGYG000001477_01540 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | Glycosyltransferase Gtf1 | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 761238; End: 762356 Strand: - |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03801 | GT4_PimA-like | 1.17e-35 | 24 | 369 | 24 | 365 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
cd03811 | GT4_GT28_WabH-like | 6.54e-29 | 17 | 342 | 16 | 332 | family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core. |
COG0438 | RfaB | 2.35e-26 | 24 | 372 | 25 | 377 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
cd03807 | GT4_WbnK-like | 4.91e-26 | 74 | 334 | 71 | 325 | Shigella dysenteriae WbnK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. WbnK in Shigella dysenteriae has been shown to be involved in the type 7 O-antigen biosynthesis. |
pfam13692 | Glyco_trans_1_4 | 5.85e-26 | 191 | 334 | 1 | 134 | Glycosyl transferases group 1. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QPW56947.1 | 9.20e-156 | 1 | 371 | 1 | 371 |
QPW59691.1 | 9.20e-156 | 1 | 371 | 1 | 371 |
AEB75693.1 | 1.23e-153 | 1 | 371 | 1 | 371 |
QPW52378.1 | 1.11e-152 | 1 | 371 | 1 | 371 |
AYF55115.1 | 1.11e-152 | 1 | 371 | 1 | 371 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
7MI0_A | 1.04e-08 | 105 | 315 | 112 | 331 | ChainA, Glycosyltransferase [Rickettsia africae ESF-5] |
6N1X_A | 1.28e-06 | 146 | 338 | 143 | 344 | ChainA, Glycosyltransferase [Staphylococcus aureus subsp. aureus CN1] |
6D9T_A | 1.34e-06 | 146 | 338 | 159 | 360 | BshAfrom Staphylococcus aureus complexed with UDP [Staphylococcus aureus] |
4N9W_A | 4.10e-06 | 167 | 361 | 168 | 356 | Crystalstructure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_A Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_B Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_C Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_D Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155] |
2GEJ_A | 4.23e-06 | 167 | 361 | 184 | 372 | CrystalStructure of phosphatidylinositol mannosyltransferase (PimA) from Mycobacterium smegmatis in complex with GDP-Man [Mycolicibacterium smegmatis MC2 155],2GEK_A Crystal Structure of phosphatidylinositol mannosyltransferase (PimA) from Mycobacterium smegmatis in complex with GDP [Mycolicibacterium smegmatis MC2 155] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
O07147 | 1.66e-06 | 167 | 361 | 164 | 352 | Phosphatidyl-myo-inositol mannosyltransferase OS=Mycobacterium leprae (strain TN) OX=272631 GN=pimA PE=3 SV=1 |
A6LKE9 | 7.66e-06 | 151 | 360 | 202 | 398 | Probable sucrose-phosphate synthase OS=Thermosipho melanesiensis (strain DSM 12029 / CIP 104789 / BI429) OX=391009 GN=Tmel_0533 PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000065 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.