logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001184_00696

You are here: Home > Sequence: MGYG000001184_00696

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA7057 sp900542735
Lineage Bacteria; Firmicutes; Bacilli; RF39; UBA660; UBA7057; UBA7057 sp900542735
CAZyme ID MGYG000001184_00696
CAZy Family GT4
CAZyme Description Processive diacylglycerol alpha-glucosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
336 MGYG000001184_6|CGC1 38799.03 9.4114
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001184 1303405 MAG Austria Europe
Gene Location Start: 32785;  End: 33795  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001184_00696.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 160 300 6.3e-16 0.90625

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 9.73e-26 38 330 77 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03817 GT4_UGDG-like 7.88e-24 70 332 111 372
UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol.
COG0438 RfaB 8.21e-24 38 336 78 381
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03809 GT4_MtfB-like 1.35e-13 96 269 129 302
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.
pfam00534 Glycos_transf_1 5.31e-13 162 310 1 156
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CBK95486.1 4.12e-121 1 329 1 326
CBL33526.1 5.84e-121 1 329 1 326
QKH47059.1 1.44e-120 1 329 1 327
QQB61989.1 2.63e-117 1 333 1 330
QQN56664.1 8.63e-116 1 333 1 330

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q8KQL6 9.48e-73 1 334 1 329
Processive diacylglycerol alpha-glucosyltransferase OS=Acholeplasma laidlawii OX=2148 GN=dgs PE=1 SV=1
Q8DPV9 7.39e-19 1 276 35 312
Alpha-galactosylglucosyldiacylglycerol synthase OS=Streptococcus pneumoniae (strain ATCC BAA-255 / R6) OX=171101 GN=cpoA PE=1 SV=1
Q93P60 3.15e-11 45 280 88 333
Alpha-monoglucosyldiacylglycerol synthase OS=Acholeplasma laidlawii OX=2148 GN=mgs PE=1 SV=1
P26402 1.68e-07 52 295 73 317
Protein RfbU OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=rfbU PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000066 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001184_00696.