logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001098_01414

You are here: Home > Sequence: MGYG000001098_01414

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Eubacterium_R sp002493325
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Acutalibacteraceae; Eubacterium_R; Eubacterium_R sp002493325
CAZyme ID MGYG000001098_01414
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
819 MGYG000001098_24|CGC2 95319.16 6.8713
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001098 2141975 MAG China Asia
Gene Location Start: 82092;  End: 84551  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001098_01414.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 648 792 4.3e-26 0.89375

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
pfam04464 Glyphos_transf 3.76e-72 38 396 2 357
CDP-Glycerol:Poly(glycerophosphate) glycerophosphotransferase. Wall-associated teichoic acids are a heterogeneous class of phosphate-rich polymers that are covalently linked to the cell wall peptidoglycan of gram-positive bacteria. They consist of a main chain of phosphodiester-linked polyols and/or sugar moieties attached to peptidoglycan via a linkage unit. CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase is responsible for the polymerization of the main chain of the teichoic acid by sequential transfer of glycerol-phosphate units from CDP-glycerol to the linkage unit lipid.
cd03811 GT4_GT28_WabH-like 1.17e-45 420 778 1 312
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
COG1887 TagB 1.59e-35 38 397 24 384
CDP-glycerol glycerophosphotransferase, TagB/SpsB family [Cell wall/membrane/envelope biogenesis, Lipid transport and metabolism].
cd03801 GT4_PimA-like 1.90e-26 487 819 46 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
pfam00534 Glycos_transf_1 3.73e-26 651 796 3 147
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AMK55912.1 1.41e-249 12 817 13 810
CBK97012.1 1.85e-183 14 819 11 808
CBL33357.1 3.69e-183 14 819 11 808
QJU15211.1 9.87e-173 14 818 16 801
QQQ92281.1 3.26e-172 12 819 5 797

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3L7I_A 9.68e-40 34 397 339 714
Structureof the Wall Teichoic Acid Polymerase TagF [Staphylococcus epidermidis RP62A],3L7I_B Structure of the Wall Teichoic Acid Polymerase TagF [Staphylococcus epidermidis RP62A],3L7I_C Structure of the Wall Teichoic Acid Polymerase TagF [Staphylococcus epidermidis RP62A],3L7I_D Structure of the Wall Teichoic Acid Polymerase TagF [Staphylococcus epidermidis RP62A]
3L7J_A 7.34e-39 34 397 339 714
ChainA, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7J_B Chain B, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7J_C Chain C, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7J_D Chain D, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7K_A Chain A, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7K_B Chain B, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7K_C Chain C, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7K_D Chain D, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7L_A Chain A, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7L_B Chain B, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7L_C Chain C, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7L_D Chain D, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A]
3L7M_A 1.75e-38 34 397 339 714
ChainA, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7M_B Chain B, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7M_C Chain C, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A],3L7M_D Chain D, Teichoic acid biosynthesis protein F [Staphylococcus epidermidis RP62A]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q5HLM5 5.02e-39 34 397 339 714
Teichoic acid poly(glycerol phosphate) polymerase OS=Staphylococcus epidermidis (strain ATCC 35984 / RP62A) OX=176279 GN=tagF PE=1 SV=1
Q8RKI5 8.59e-38 39 394 30 389
Teichoic acid poly(glycerol phosphate) polymerase OS=Bacillus spizizenii (strain ATCC 23059 / NRRL B-14472 / W23) OX=655816 GN=tarF PE=1 SV=1
P13485 2.07e-30 14 395 349 740
Teichoic acid poly(glycerol phosphate) polymerase OS=Bacillus subtilis (strain 168) OX=224308 GN=tagF PE=1 SV=1
Q2G1C1 1.74e-27 42 393 29 383
Teichoic acid glycerol-phosphate transferase OS=Staphylococcus aureus (strain NCTC 8325 / PS 47) OX=93061 GN=tarF PE=1 SV=1
P27621 6.87e-17 102 397 79 376
Teichoic acid glycerol-phosphate primase OS=Bacillus subtilis (strain 168) OX=224308 GN=tagB PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000041 0.000004 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001098_01414.