logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000633_01968

You are here: Home > Sequence: MGYG000000633_01968

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Victivallis sp900768515
Lineage Bacteria; Verrucomicrobiota; Lentisphaeria; Victivallales; Victivallaceae; Victivallis; Victivallis sp900768515
CAZyme ID MGYG000000633_01968
CAZy Family GH13
CAZyme Description Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1403 MGYG000000633_29|CGC1 155866.5 5.551
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000633 2845403 MAG Madagascar Africa
Gene Location Start: 12069;  End: 16280  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000633_01968.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH133 1026 1393 9.2e-89 0.9758064516129032
GH13 173 364 4.2e-29 0.8714285714285714

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
pfam06202 GDE_C 1.00e-81 1021 1394 6 374
Amylo-alpha-1,6-glucosidase. This family includes human glycogen branching enzyme AGL. This enzyme contains a number of distinct catalytic activities. It has been shown for the yeast homolog GDB1 that mutations in this region disrupt the enzymes Amylo-alpha-1,6-glucosidase (EC:3.2.1.33).
cd11313 AmyAc_arch_bac_AmyA 2.24e-48 125 486 6 333
Alpha amylase catalytic domain found in archaeal and bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes firmicutes, bacteroidetes, and proteobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG3408 GDB1 3.61e-46 925 1396 168 603
Glycogen debranching enzyme (alpha-1,6-glucosidase) [Carbohydrate transport and metabolism].
cd00551 AmyAc_family 1.91e-28 165 434 22 244
Alpha amylase catalytic domain family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; and C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost this catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
TIGR01531 glyc_debranch 1.81e-23 1029 1396 1021 1461
glycogen debranching enzymye. glycogen debranching enzyme possesses two different catalytic activities; oligo-1,4-->1,4-glucantransferase (EC 2.4.1.25) and amylo-1,6-glucosidase (EC 3.2.1.33). Site directed mutagenesis studies in S. cerevisiae indicate that the transferase and glucosidase activities are independent and located in different regions of the polypeptide chain. Proteins in this model belong to the larger alpha-amylase family. The model covers eukaryotic proteins with a seed composed of human, nematode and yeast sequences. Yeast seed sequence is well characterized. The model is quite rigorous; either query sequence yields large bit score or it fails to hit the model altogether. There doesn't appear to be any middle ground. [Energy metabolism, Biosynthesis and degradation of polysaccharides]

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AVM43688.1 0.0 2 1400 1 1403
QSH41975.1 0.0 2 1402 1 1417
BBO75755.1 0.0 16 1395 22 1424
AKJ63770.1 0.0 16 1403 26 1427
ABC78593.1 0.0 1 1401 4 1422

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4GKL_A 6.75e-18 167 333 24 179
Crystalstructure of a noncanonic maltogenic alpha-amylase AmyB from Thermotoga neapolitana [Thermotoga neapolitana],4GKL_B Crystal structure of a noncanonic maltogenic alpha-amylase AmyB from Thermotoga neapolitana [Thermotoga neapolitana]
1WZA_A 1.65e-14 165 334 24 209
Crystalstructure of alpha-amylase from H.orenii [Halothermothrix orenii]
4LXF_A 6.89e-11 132 362 48 309
Crystalstructure of M. tuberculosis TreS [Mycobacterium tuberculosis H37Rv],4LXF_B Crystal structure of M. tuberculosis TreS [Mycobacterium tuberculosis H37Rv]
4U33_A 3.02e-10 162 486 273 614
Structureof Mtb GlgE bound to maltose [Mycobacterium tuberculosis CDC1551],4U33_B Structure of Mtb GlgE bound to maltose [Mycobacterium tuberculosis CDC1551],4U33_C Structure of Mtb GlgE bound to maltose [Mycobacterium tuberculosis CDC1551],4U33_D Structure of Mtb GlgE bound to maltose [Mycobacterium tuberculosis CDC1551],4U33_E Structure of Mtb GlgE bound to maltose [Mycobacterium tuberculosis CDC1551],4U33_F Structure of Mtb GlgE bound to maltose [Mycobacterium tuberculosis CDC1551],4U3C_A Docking Site of Maltohexaose in the Mtb GlgE [Mycobacterium tuberculosis CDC1551],4U3C_B Docking Site of Maltohexaose in the Mtb GlgE [Mycobacterium tuberculosis CDC1551],4U3C_C Docking Site of Maltohexaose in the Mtb GlgE [Mycobacterium tuberculosis CDC1551],4U3C_D Docking Site of Maltohexaose in the Mtb GlgE [Mycobacterium tuberculosis CDC1551],4U3C_E Docking Site of Maltohexaose in the Mtb GlgE [Mycobacterium tuberculosis CDC1551],4U3C_F Docking Site of Maltohexaose in the Mtb GlgE [Mycobacterium tuberculosis CDC1551]
5CGM_A 3.88e-10 162 382 248 468
Structureof Mycobacterium thermoresistibile GlgE in complex with maltose at 1.95A resolution [Mycolicibacterium thermoresistibile ATCC 19527],5CGM_B Structure of Mycobacterium thermoresistibile GlgE in complex with maltose at 1.95A resolution [Mycolicibacterium thermoresistibile ATCC 19527],5CIM_A Structure of Mycobacterium thermoresistibile GlgE in complex with maltose (cocrystallisation with maltose-1-phosphate) at 3.32A resolution [Mycolicibacterium thermoresistibile ATCC 19527],5CIM_B Structure of Mycobacterium thermoresistibile GlgE in complex with maltose (cocrystallisation with maltose-1-phosphate) at 3.32A resolution [Mycolicibacterium thermoresistibile ATCC 19527],5CJ5_A Structure of Mycobacterium thermoresistibile GlgE APO form at 3.13A resolution [Mycolicibacterium thermoresistibile ATCC 19527],5CJ5_B Structure of Mycobacterium thermoresistibile GlgE APO form at 3.13A resolution [Mycolicibacterium thermoresistibile ATCC 19527]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q3J3M8 4.93e-20 165 527 230 607
Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase OS=Cereibacter sphaeroides (strain ATCC 17023 / DSM 158 / JCM 6121 / CCUG 31486 / LMG 2827 / NBRC 12203 / NCIMB 8253 / ATH 2.4.1.) OX=272943 GN=glgE PE=3 SV=3
Q9JN46 5.07e-20 165 527 212 589
Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase (Fragment) OS=Cereibacter sphaeroides OX=1063 GN=glgE PE=3 SV=2
Q2RTZ1 1.70e-17 165 522 255 628
Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase OS=Rhodospirillum rubrum (strain ATCC 11170 / ATH 1.1.1 / DSM 467 / LMG 4362 / NCIMB 8255 / S1) OX=269796 GN=glgE PE=3 SV=1
Q6L2Z8 9.38e-16 158 522 192 569
Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase OS=Picrophilus torridus (strain ATCC 700027 / DSM 9790 / JCM 10055 / NBRC 100828) OX=263820 GN=glgE PE=3 SV=1
P14899 1.41e-15 165 324 54 214
Alpha-amylase 3 OS=Dictyoglomus thermophilum (strain ATCC 35947 / DSM 3960 / H-6-12) OX=309799 GN=amyC PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000068 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000633_01968.