logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000470_00459

You are here: Home > Sequence: MGYG000000470_00459

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Brachyspira pilosicoli
Lineage Bacteria; Spirochaetota; Brachyspirae; Brachyspirales; Brachyspiraceae; Brachyspira; Brachyspira pilosicoli
CAZyme ID MGYG000000470_00459
CAZy Family GH13
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
452 53165.02 4.4712
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000470 2694868 MAG Fiji Oceania
Gene Location Start: 18965;  End: 20323  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000470_00459.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 20 236 3.5e-44 0.9857142857142858

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11313 AmyAc_arch_bac_AmyA 9.14e-36 21 334 26 335
Alpha amylase catalytic domain found in archaeal and bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes firmicutes, bacteroidetes, and proteobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd00551 AmyAc_family 1.31e-22 5 280 2 238
Alpha amylase catalytic domain family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; and C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost this catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG0366 AmyA 1.93e-14 20 294 32 314
Glycosidase [Carbohydrate transport and metabolism].
pfam00128 Alpha-amylase 1.20e-11 22 181 9 180
Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain.
cd11316 AmyAc_bac2_AmyA 7.39e-11 22 175 28 186
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AFR70162.1 0.0 1 452 1 452
CCG57319.1 3.36e-317 1 452 1 452
ADK30554.1 1.68e-296 29 452 1 424
AGA65413.1 8.87e-292 29 452 1 424
AEM21212.1 1.25e-208 1 440 1 473

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3DHU_A 6.46e-16 2 275 12 303
Crystalstructure of an alpha-amylase from Lactobacillus plantarum [Lactiplantibacillus plantarum],3DHU_B Crystal structure of an alpha-amylase from Lactobacillus plantarum [Lactiplantibacillus plantarum],3DHU_C Crystal structure of an alpha-amylase from Lactobacillus plantarum [Lactiplantibacillus plantarum],3DHU_D Crystal structure of an alpha-amylase from Lactobacillus plantarum [Lactiplantibacillus plantarum]
4GKL_A 1.38e-13 21 184 29 180
Crystalstructure of a noncanonic maltogenic alpha-amylase AmyB from Thermotoga neapolitana [Thermotoga neapolitana],4GKL_B Crystal structure of a noncanonic maltogenic alpha-amylase AmyB from Thermotoga neapolitana [Thermotoga neapolitana]
6SAV_A 1.38e-10 21 343 45 363
Structuraland functional characterisation of three novel fungal amylases with enhanced stability and pH tolerance [Rhizomucor pusillus]
6SAV_B 1.84e-10 21 343 45 363
Structuraland functional characterisation of three novel fungal amylases with enhanced stability and pH tolerance [Rhizomucor pusillus]
1LWH_A 3.61e-06 23 267 29 288
CrystalStructure Of T. Maritima 4-Alpha-Glucanotransferase [Thermotoga maritima],1LWH_B Crystal Structure Of T. Maritima 4-Alpha-Glucanotransferase [Thermotoga maritima],1LWJ_A Crystal Structure Of T. Maritima 4-Alpha- GlucanotransferaseACARBOSE COMPLEX [Thermotoga maritima],1LWJ_B Crystal Structure Of T. Maritima 4-Alpha- GlucanotransferaseACARBOSE COMPLEX [Thermotoga maritima]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q63T93 7.42e-15 4 295 10 298
Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase OS=Burkholderia pseudomallei (strain K96243) OX=272560 GN=glgE PE=3 SV=2
Q6L2Z8 2.77e-07 4 203 190 395
Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase OS=Picrophilus torridus (strain ATCC 700027 / DSM 9790 / JCM 10055 / NBRC 100828) OX=263820 GN=glgE PE=3 SV=1
P38939 8.16e-07 14 212 450 667
Amylopullulanase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=apu PE=1 SV=2
P38536 8.42e-07 23 332 461 826
Amylopullulanase OS=Thermoanaerobacterium thermosulfurigenes OX=33950 GN=amyB PE=3 SV=2
P16950 7.44e-06 23 212 459 668
Amylopullulanase OS=Thermoanaerobacter thermohydrosulfuricus OX=1516 GN=apu PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000059 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000470_00459.