logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000466_00506

You are here: Home > Sequence: MGYG000000466_00506

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UMGS1668 sp900553955
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Ruminococcaceae; UMGS1668; UMGS1668 sp900553955
CAZyme ID MGYG000000466_00506
CAZy Family GT4
CAZyme Description Putative glycosyltransferase EpsD
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
373 MGYG000000466_8|CGC2 42391.18 8.8067
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000466 1837167 MAG Fiji Oceania
Gene Location Start: 14486;  End: 15607  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000466_00506.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 195 344 8.1e-36 0.95625

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03808 GT4_CapM-like 5.21e-72 2 361 1 353
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides.
cd03801 GT4_PimA-like 1.02e-50 21 368 24 364
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 3.92e-41 1 368 1 373
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam00534 Glycos_transf_1 1.44e-40 199 348 1 154
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
cd03819 GT4_WavL-like 1.83e-38 21 348 21 331
Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QUA54406.1 2.97e-115 2 369 3 369
QUT91245.1 1.14e-109 2 367 6 375
QIK51235.1 1.78e-99 2 365 3 372
QFR27367.1 5.21e-97 16 373 16 366
ALV21396.1 1.22e-94 16 360 16 356

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3C4Q_A 5.25e-17 174 370 196 403
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3C48_A 5.55e-17 174 370 216 423
Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]
2IW1_A 4.88e-14 172 372 168 371
CrystalStructure of WaaG, a glycosyltransferase involved in lipopolysaccharide biosynthesis [Escherichia coli str. K-12 substr. W3110]
5D00_A 6.73e-14 22 357 28 369
Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]
2IV7_A 1.59e-13 172 372 168 371
CrystalStructure of WaaG, a glycosyltransferase involved in lipopolysaccharide biosynthesis [Escherichia coli str. K-12 substr. W3110]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P71053 9.98e-71 16 362 18 362
Putative glycosyltransferase EpsD OS=Bacillus subtilis (strain 168) OX=224308 GN=epsD PE=2 SV=1
Q59002 1.20e-19 191 372 199 384
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
Q9R9N1 2.51e-17 123 347 97 313
Lipopolysaccharide core biosynthesis glycosyltransferase LpsE OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsE PE=3 SV=1
P9WMY8 2.01e-16 135 344 158 364
Glycogen synthase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT3116 PE=3 SV=1
P9WMY9 2.01e-16 135 344 158 364
Glycogen synthase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv3032 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000062 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000466_00506.