Species | Odoribacter splanchnicus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Marinifilaceae; Odoribacter; Odoribacter splanchnicus | |||||||||||
CAZyme ID | MGYG000000254_01296 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | Glycogen synthase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 58622; End: 59908 Strand: - |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03801 | GT4_PimA-like | 1.40e-65 | 4 | 407 | 1 | 348 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
COG0438 | RfaB | 1.30e-46 | 149 | 428 | 84 | 379 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
cd03819 | GT4_WavL-like | 2.47e-45 | 147 | 428 | 75 | 344 | Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core. |
cd03808 | GT4_CapM-like | 1.02e-40 | 148 | 397 | 81 | 334 | capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides. |
cd03811 | GT4_GT28_WabH-like | 6.26e-38 | 96 | 406 | 37 | 342 | family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
ADY31395.1 | 6.08e-312 | 1 | 428 | 1 | 428 |
SNV25941.1 | 1.81e-307 | 7 | 428 | 1 | 422 |
AZS28219.1 | 5.26e-249 | 1 | 426 | 1 | 426 |
QRO52054.1 | 3.45e-248 | 7 | 426 | 1 | 420 |
ATA74931.1 | 1.36e-228 | 1 | 426 | 1 | 427 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6TVP_A | 7.99e-20 | 151 | 426 | 95 | 399 | Structureof Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM [Mycolicibacterium smegmatis MC2 155],6TVP_B Structure of Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM [Mycolicibacterium smegmatis MC2 155] |
3L01_A | 2.55e-18 | 4 | 390 | 4 | 393 | ChainA, GlgA glycogen synthase [Pyrococcus abyssi],3L01_B Chain B, GlgA glycogen synthase [Pyrococcus abyssi] |
3FRO_A | 2.72e-18 | 4 | 390 | 4 | 393 | Crystalstructure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi],3FRO_B Crystal structure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi],3FRO_C Crystal structure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi] |
2BIS_A | 2.73e-18 | 4 | 390 | 5 | 394 | Structureof glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi],2BIS_B Structure of glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi],2BIS_C Structure of glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi] |
3C4Q_A | 1.19e-15 | 149 | 425 | 103 | 404 | Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q59002 | 3.76e-49 | 4 | 424 | 2 | 382 | Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1 |
P9WMY9 | 2.72e-27 | 4 | 428 | 2 | 395 | Glycogen synthase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv3032 PE=1 SV=1 |
P9WMY8 | 2.72e-27 | 4 | 428 | 2 | 395 | Glycogen synthase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT3116 PE=3 SV=1 |
A0R2E2 | 3.87e-19 | 151 | 426 | 81 | 385 | Alpha-maltose-1-phosphate synthase OS=Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) OX=246196 GN=glgM PE=1 SV=1 |
Q4H4F8 | 9.72e-19 | 146 | 407 | 82 | 362 | 2-deoxystreptamine N-acetyl-D-glucosaminyltransferase OS=Niallia circulans OX=1397 GN=btrM PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000023 | 0.000012 | 0.000001 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.