Species | Longibaculum muris | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes; Bacilli; Erysipelotrichales; Erysipelatoclostridiaceae; Longibaculum; Longibaculum muris | |||||||||||
CAZyme ID | MGYG000000134_00388 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | Regulatory protein RecX | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 103972; End: 105957 Strand: + |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03817 | GT4_UGDG-like | 9.37e-99 | 2 | 378 | 1 | 368 | UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol. |
cd03801 | GT4_PimA-like | 2.12e-51 | 2 | 383 | 1 | 366 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
cd03814 | GT4-like | 5.08e-49 | 3 | 383 | 2 | 365 | glycosyltransferase family 4 proteins. This family is most closely related to the GT4 family of glycosyltransferases and includes a sequence annotated as alpha-D-mannose-alpha(1-6)phosphatidyl myo-inositol monomannoside transferase from Bacillus halodurans. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria and eukaryotes. |
COG0438 | RfaB | 4.78e-45 | 1 | 389 | 1 | 381 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
PRK14135 | recX | 1.02e-37 | 425 | 659 | 30 | 263 | recombination regulator RecX; Provisional |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QUN13175.1 | 0.0 | 1 | 661 | 1 | 661 |
QQV07332.1 | 6.05e-249 | 1 | 653 | 1 | 655 |
QQY28842.1 | 6.05e-249 | 1 | 653 | 1 | 655 |
QMW74356.1 | 9.87e-248 | 1 | 653 | 1 | 655 |
QPS12371.1 | 9.87e-248 | 1 | 653 | 1 | 655 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
3E3V_A | 7.38e-15 | 437 | 604 | 3 | 170 | ChainA, Regulatory protein recX [Ligilactobacillus salivarius UCC118] |
3D5L_A | 2.31e-12 | 421 | 591 | 30 | 200 | ChainA, Regulatory protein RecX [Limosilactobacillus reuteri subsp. rodentium],3D5L_B Chain B, Regulatory protein RecX [Limosilactobacillus reuteri subsp. rodentium] |
3C4Q_A | 1.17e-11 | 89 | 387 | 104 | 407 | Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum] |
3C48_A | 1.22e-11 | 89 | 387 | 124 | 427 | Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum] |
5E9T_A | 4.21e-10 | 220 | 369 | 327 | 484 | Crystalstructure of GtfA/B complex [Streptococcus gordonii],5E9T_C Crystal structure of GtfA/B complex [Streptococcus gordonii],5E9U_A Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_C Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_E Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_G Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q93P60 | 1.37e-61 | 1 | 374 | 1 | 376 | Alpha-monoglucosyldiacylglycerol synthase OS=Acholeplasma laidlawii OX=2148 GN=mgs PE=1 SV=1 |
Q8CWR6 | 8.02e-59 | 1 | 386 | 1 | 380 | Alpha-monoglucosyldiacylglycerol synthase OS=Streptococcus pneumoniae (strain ATCC BAA-255 / R6) OX=171101 GN=spr0982 PE=1 SV=1 |
A3CPV8 | 1.60e-22 | 419 | 654 | 23 | 256 | Regulatory protein RecX OS=Streptococcus sanguinis (strain SK36) OX=388919 GN=recX PE=3 SV=1 |
Q8NT41 | 2.32e-22 | 1 | 382 | 7 | 371 | GDP-mannose-dependent alpha-mannosyltransferase OS=Corynebacterium glutamicum (strain ATCC 13032 / DSM 20300 / BCRC 11384 / JCM 1318 / LMG 3730 / NCIMB 10025) OX=196627 GN=mgtA PE=1 SV=1 |
Q02VU7 | 3.69e-22 | 421 | 654 | 28 | 264 | Regulatory protein RecX OS=Lactococcus lactis subsp. cremoris (strain SK11) OX=272622 GN=recX PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000053 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.