logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000127_03431

You are here: Home > Sequence: MGYG000000127_03431

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Catenibacillus sp902363555
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Catenibacillus; Catenibacillus sp902363555
CAZyme ID MGYG000000127_03431
CAZy Family GH13
CAZyme Description 1,4-alpha-glucan branching enzyme GlgB
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
696 77646.79 4.7025
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000127 6637359 Isolate Canada North America
Gene Location Start: 153012;  End: 155102  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000127_03431.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 280 579 1e-31 0.9364548494983278

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11313 AmyAc_arch_bac_AmyA 2.41e-38 291 611 23 335
Alpha amylase catalytic domain found in archaeal and bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes firmicutes, bacteroidetes, and proteobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd00551 AmyAc_family 1.35e-27 269 576 1 253
Alpha amylase catalytic domain family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; and C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost this catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
pfam00128 Alpha-amylase 3.28e-14 296 579 10 325
Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain.
cd11338 AmyAc_CMD 1.71e-12 296 579 62 341
Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG0366 AmyA 5.98e-11 296 604 35 376
Glycosidase [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AEE96957.1 7.10e-181 1 696 10 682
QHT61281.1 1.42e-178 9 664 17 649
AZN42601.1 6.02e-173 13 659 24 659
AZI66732.1 3.24e-25 291 600 63 363
AQQ70337.1 3.66e-25 269 658 503 880

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4GKL_A 4.39e-18 294 579 29 291
Crystalstructure of a noncanonic maltogenic alpha-amylase AmyB from Thermotoga neapolitana [Thermotoga neapolitana],4GKL_B Crystal structure of a noncanonic maltogenic alpha-amylase AmyB from Thermotoga neapolitana [Thermotoga neapolitana]
3DHU_A 9.45e-18 296 579 36 313
Crystalstructure of an alpha-amylase from Lactobacillus plantarum [Lactiplantibacillus plantarum],3DHU_B Crystal structure of an alpha-amylase from Lactobacillus plantarum [Lactiplantibacillus plantarum],3DHU_C Crystal structure of an alpha-amylase from Lactobacillus plantarum [Lactiplantibacillus plantarum],3DHU_D Crystal structure of an alpha-amylase from Lactobacillus plantarum [Lactiplantibacillus plantarum]
2Z1K_A 1.22e-08 289 590 49 362
CrystalStructure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8],2Z1K_B Crystal Structure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8],2Z1K_C Crystal Structure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8],2Z1K_D Crystal Structure of Ttha1563 from Thermus thermophilus HB8 [Thermus thermophilus HB8]
3VM7_A 1.26e-08 296 622 70 405
ChainA, Alpha-amylase [Malbranchea cinnamomea]
4M8U_A 9.65e-08 267 435 7 210
TheStructure of MalL mutant enzyme V200A from Bacillus subtilus [Bacillus subtilis subsp. subtilis str. 168]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q1H1K2 2.09e-10 296 455 274 443
1,4-alpha-glucan branching enzyme GlgB OS=Methylobacillus flagellatus (strain KT / ATCC 51484 / DSM 6875) OX=265072 GN=glgB PE=3 SV=1
A8AQY3 3.63e-10 296 423 273 405
1,4-alpha-glucan branching enzyme GlgB OS=Citrobacter koseri (strain ATCC BAA-895 / CDC 4225-83 / SGSC4696) OX=290338 GN=glgB PE=3 SV=1
A6VP15 1.16e-09 296 423 273 405
1,4-alpha-glucan branching enzyme GlgB OS=Actinobacillus succinogenes (strain ATCC 55618 / DSM 22257 / CCUG 43843 / 130Z) OX=339671 GN=glgB PE=3 SV=1
Q0AGJ0 1.44e-09 274 423 267 415
1,4-alpha-glucan branching enzyme GlgB OS=Nitrosomonas eutropha (strain DSM 101675 / C91 / Nm57) OX=335283 GN=glgB PE=3 SV=1
Q65TI0 3.28e-09 296 423 273 405
1,4-alpha-glucan branching enzyme GlgB OS=Mannheimia succiniciproducens (strain MBEL55E) OX=221988 GN=glgB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000040 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000127_03431.