logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000125_01674

You are here: Home > Sequence: MGYG000000125_01674

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Clostridium_B tyrobutyricum
Lineage Bacteria; Firmicutes_A; Clostridia; Clostridiales; Clostridiaceae; Clostridium_B; Clostridium_B tyrobutyricum
CAZyme ID MGYG000000125_01674
CAZy Family GH13
CAZyme Description Amylopullulanase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
591 69262.62 7.6662
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000125 3256597 Isolate Canada North America
Gene Location Start: 66635;  End: 68410  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000125_01674.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 187 499 1e-138 0.9936708860759493

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11338 AmyAc_CMD 0.0 134 536 1 389
Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK14510 PRK14510 1.47e-121 4 569 2 626
bifunctional glycogen debranching protein GlgX/4-alpha-glucanotransferase.
PRK10785 PRK10785 8.82e-100 129 574 116 569
maltodextrin glucosidase; Provisional
cd11316 AmyAc_bac2_AmyA 3.03e-61 135 534 1 403
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
pfam00128 Alpha-amylase 6.32e-57 187 499 1 334
Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ANP70716.1 0.0 1 591 1 591
AND86225.1 0.0 1 591 1 591
QNB67648.1 0.0 1 591 1 591
EDK35486.1 0.0 1 589 1 590
BAH08134.1 0.0 1 589 1 590

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1J0H_A 2.28e-80 126 568 126 542
Crystalstructure of Bacillus stearothermophilus neopullulanase [Geobacillus stearothermophilus],1J0H_B Crystal structure of Bacillus stearothermophilus neopullulanase [Geobacillus stearothermophilus],1J0I_A Crystal structure of neopullulanase complex with panose [Geobacillus stearothermophilus],1J0I_B Crystal structure of neopullulanase complex with panose [Geobacillus stearothermophilus]
1J0J_A 6.24e-80 126 568 126 542
ChainA, neopullulanase [Geobacillus stearothermophilus],1J0J_B Chain B, neopullulanase [Geobacillus stearothermophilus],1J0K_A Chain A, neopullulanase [Geobacillus stearothermophilus],1J0K_B Chain B, neopullulanase [Geobacillus stearothermophilus]
5Z0U_A 1.50e-79 84 565 89 576
Thermoactinomycesvulgaris R-47 alpha-amylase I (TVA I) 11 residues (from A363 to N373) deletion mutant (Del11) [Thermoactinomyces vulgaris]
1JF6_A 4.36e-79 124 567 120 538
ChainA, ALPHA AMYLASE II [Thermoactinomyces vulgaris],1JF6_B Chain B, ALPHA AMYLASE II [Thermoactinomyces vulgaris]
1JF5_A 6.10e-79 124 567 120 538
ChainA, ALPHA AMYLASE II [Thermoactinomyces vulgaris],1JF5_B Chain B, ALPHA AMYLASE II [Thermoactinomyces vulgaris]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P38939 5.09e-121 5 575 253 881
Amylopullulanase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=apu PE=1 SV=2
P16950 6.02e-118 5 575 253 882
Amylopullulanase OS=Thermoanaerobacter thermohydrosulfuricus OX=1516 GN=apu PE=1 SV=1
P36905 7.24e-118 5 566 256 873
Amylopullulanase OS=Thermoanaerobacterium saccharolyticum OX=28896 GN=apu PE=3 SV=2
P38536 6.52e-115 5 566 256 872
Amylopullulanase OS=Thermoanaerobacterium thermosulfurigenes OX=33950 GN=amyB PE=3 SV=2
P29964 6.04e-81 126 576 123 544
Cyclomaltodextrinase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=Teth39_0676 PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000051 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000125_01674.