Species | Clostridium cuniculi | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Clostridiales; Clostridiaceae; Clostridium; Clostridium cuniculi | |||||||||||
CAZyme ID | MGYG000000104_02826 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | Glycosyltransferase Gtf1 | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 6594; End: 8405 Strand: + |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03808 | GT4_CapM-like | 6.92e-88 | 229 | 560 | 1 | 325 | capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides. |
TIGR03570 | NeuD_NnaD | 6.93e-66 | 3 | 207 | 1 | 200 | sugar O-acyltransferase, sialic acid O-acetyltransferase NeuD family. This family of proteins includes the characterized NeuD sialic acid O-acetyltransferase enzymes from E. coli and Streptococcus agalactiae (group B strep). These two are quite closely related to one another, so extension of this annotation to other members of the family in unsupported without additional independent evidence. The neuD gene is often observed in close proximity to the neuABC genes for the biosynthesis of CMP-N-acetylneuraminic acid (CMP-sialic acid), and NeuD sequences from these organisms were used to construct the seed for this model. Nevertheless, there are numerous instances of sequences identified by this model which are observed in a different genomic context (although almost universally in exopolysaccharide biosynthesis-related loci), as well as in genomes for which the biosynthesis of sialic acid (SA) is undemonstrated. Even in the cases where the association with SA biosynthesis is strong, it is unclear in the literature whether the biological substrate is SA iteself, CMP-SA, or a polymer containing SA. Similarly, it is unclear to what extent the enzyme has a preference for acetylation at the 7, 8 or 9 positions. In the absence of evidence of association with SA, members of this family may be involved with the acetylation of differring sugar substrates, or possibly the delivery of alternative acyl groups. The closest related sequences to this family (and those used to root the phylogenetic tree constructed to create this model) are believed to be succinyltransferases involved in lysine biosynthesis. These proteins contain repeats of the bacterial transferase hexapeptide (pfam00132), although often these do not register above the trusted cutoff. |
cd03360 | LbH_AT_putative | 7.88e-59 | 6 | 207 | 1 | 197 | Putative Acyltransferase (AT), Left-handed parallel beta-Helix (LbH) domain; This group is composed of mostly uncharacterized proteins containing an N-terminal helical subdomain followed by a LbH domain. The alignment contains 6 turns, each containing three imperfect tandem repeats of a hexapeptide repeat motif (X-[STAV]-X-[LIV]-[GAED]-X). Proteins containing hexapeptide repeats are often enzymes showing acyltransferase activity. A few members are identified as NeuD, a sialic acid (Sia) O-acetyltransferase that is required for Sia synthesis and surface polysaccharide sialylation. |
cd03807 | GT4_WbnK-like | 1.38e-34 | 270 | 560 | 45 | 325 | Shigella dysenteriae WbnK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. WbnK in Shigella dysenteriae has been shown to be involved in the type 7 O-antigen biosynthesis. |
cd03801 | GT4_PimA-like | 5.71e-34 | 229 | 560 | 1 | 329 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
BAB80181.1 | 1.17e-178 | 228 | 603 | 2 | 368 |
ALG47857.1 | 1.90e-176 | 228 | 603 | 2 | 380 |
AOY52884.1 | 7.23e-135 | 228 | 601 | 2 | 369 |
AUN15257.1 | 1.42e-132 | 228 | 603 | 2 | 365 |
ANX13960.1 | 6.53e-94 | 225 | 600 | 2 | 370 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
7TXP_A | 5.54e-22 | 1 | 212 | 1 | 206 | ChainA, VioB [Acinetobacter baumannii],7TXQ_A Chain A, VioB [Acinetobacter baumannii],7TXS_A Chain A, VioB [Acinetobacter baumannii] |
5D00_A | 7.94e-16 | 291 | 555 | 72 | 331 | Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168] |
4M9C_A | 3.21e-15 | 6 | 212 | 7 | 214 | ChainA, Bacterial transferase hexapeptide (Three repeats) family protein [Acinetobacter baumannii],4M9C_B Chain B, Bacterial transferase hexapeptide (Three repeats) family protein [Acinetobacter baumannii],4M9C_C Chain C, Bacterial transferase hexapeptide (Three repeats) family protein [Acinetobacter baumannii],4M9C_D Chain D, Bacterial transferase hexapeptide (Three repeats) family protein [Acinetobacter baumannii],4M9C_E Chain E, Bacterial transferase hexapeptide (Three repeats) family protein [Acinetobacter baumannii],4M9C_F Chain F, Bacterial transferase hexapeptide (Three repeats) family protein [Acinetobacter baumannii] |
2JJM_A | 8.99e-15 | 291 | 589 | 82 | 385 | CrystalStructure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_B Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_C Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_D Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_E Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_F Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_G Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_H Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_I Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_J Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_K Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_L Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames] |
3MBO_A | 1.02e-14 | 291 | 589 | 102 | 405 | CrystalStructure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_B Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_C Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_D Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_E Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_F Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_G Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_H Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P71053 | 2.66e-64 | 228 | 565 | 3 | 337 | Putative glycosyltransferase EpsD OS=Bacillus subtilis (strain 168) OX=224308 GN=epsD PE=2 SV=1 |
Q0P9C9 | 5.53e-16 | 229 | 539 | 2 | 313 | N,N'-diacetylbacillosaminyl-diphospho-undecaprenol alpha-1,3-N-acetylgalactosaminyltransferase OS=Campylobacter jejuni subsp. jejuni serotype O:2 (strain ATCC 700819 / NCTC 11168) OX=192222 GN=pglA PE=1 SV=1 |
P42982 | 4.28e-15 | 291 | 555 | 70 | 329 | N-acetyl-alpha-D-glucosaminyl L-malate synthase OS=Bacillus subtilis (strain 168) OX=224308 GN=bshA PE=1 SV=2 |
Q81ST7 | 4.49e-14 | 291 | 589 | 69 | 372 | N-acetyl-alpha-D-glucosaminyl L-malate synthase OS=Bacillus anthracis OX=1392 GN=bshA PE=1 SV=1 |
Q48453 | 2.19e-11 | 284 | 564 | 49 | 325 | Uncharacterized 41.2 kDa protein in cps region OS=Klebsiella pneumoniae OX=573 PE=4 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000058 | 0.000001 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.