Species | UBA7160 sp902363135 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; UBA7160; UBA7160 sp902363135 | |||||||||||
CAZyme ID | MGYG000000092_02794 | |||||||||||
CAZy Family | GH137 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 49473; End: 50483 Strand: - |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd18610 | GH130_BT3780-like | 1.85e-16 | 106 | 313 | 10 | 219 | Glycosyl hydrolase family 130, such as beta-mammosidase BT3780 and BACOVA_03624. This subfamily contains glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), and includes Bacteroides enzymes, BT3780 and BACOVA_03624. Members of this family possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. GH130 enzymes have also been shown to target beta-1,2- and beta-1,4-mannosidic linkages where these phosphorylases mediate bond cleavage by a single displacement reaction in which phosphate functions as the catalytic nucleophile. However, some lack the conserved basic residues that bind the phosphate nucleophile, as observed for the Bacteroides enzymes, BT3780 and BACOVA_03624, which are indeed beta-mannosidases that hydrolyze beta-1,2-mannosidic linkages through an inverting mechanism. |
cd18609 | GH32-like | 3.05e-16 | 79 | 250 | 43 | 221 | Glycosyl hydrolase family 32 family protein. The GH32 family contains glycosyl hydrolase family GH32 proteins that cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
cd18609 | GH32-like | 7.61e-16 | 142 | 284 | 44 | 199 | Glycosyl hydrolase family 32 family protein. The GH32 family contains glycosyl hydrolase family GH32 proteins that cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
cd18607 | GH130 | 8.14e-16 | 167 | 309 | 1 | 134 | Glycoside hydrolase family 130. Members of the glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor. |
cd18607 | GH130 | 3.91e-15 | 106 | 331 | 1 | 208 | Glycoside hydrolase family 130. Members of the glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QVL30751.1 | 4.82e-105 | 21 | 328 | 20 | 309 |
QCT79809.1 | 1.56e-104 | 15 | 335 | 20 | 326 |
CAH09000.1 | 1.56e-104 | 15 | 335 | 20 | 326 |
QRP88911.1 | 2.22e-104 | 15 | 335 | 20 | 326 |
BAD50238.1 | 2.22e-104 | 15 | 335 | 20 | 326 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
7FIP_A | 2.70e-07 | 97 | 193 | 23 | 127 | ChainA, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIP_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIP_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIP_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_A Chain A, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_A Chain A, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_A Chain A, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514] |
4AK5_A | 4.65e-07 | 80 | 168 | 134 | 223 | ChainA, Anhydro-alpha-l-galactosidase [Phocaeicola plebeius],4AK5_B Chain B, Anhydro-alpha-l-galactosidase [Phocaeicola plebeius] |
4AK6_A | 4.65e-07 | 80 | 168 | 134 | 223 | ChainA, Anhydro-alpha-l-galactosidase [Phocaeicola plebeius],4AK6_B Chain B, Anhydro-alpha-l-galactosidase [Phocaeicola plebeius] |
4AK7_A | 4.65e-07 | 80 | 168 | 134 | 223 | ChainA, Anhydro-alpha-l-galactosidase [Phocaeicola plebeius],4AK7_B Chain B, Anhydro-alpha-l-galactosidase [Phocaeicola plebeius] |
3R4Y_A | 3.25e-06 | 98 | 269 | 35 | 240 | Crystalstructure of alpha-neoagarobiose hydrolase (ALPHA-NABH) from Saccharophagus degradans 2-40 [Saccharophagus degradans 2-40],3R4Y_B Crystal structure of alpha-neoagarobiose hydrolase (ALPHA-NABH) from Saccharophagus degradans 2-40 [Saccharophagus degradans 2-40],3R4Z_A Crystal structure of alpha-neoagarobiose hydrolase (ALPHA-NABH) in complex with alpha-d-galactopyranose from Saccharophagus degradans 2-40 [Saccharophagus degradans 2-40],3R4Z_B Crystal structure of alpha-neoagarobiose hydrolase (ALPHA-NABH) in complex with alpha-d-galactopyranose from Saccharophagus degradans 2-40 [Saccharophagus degradans 2-40] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P9WLW7 | 3.38e-11 | 77 | 264 | 114 | 295 | Uncharacterized protein Rv1502 OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv1502 PE=1 SV=1 |
P9WLW6 | 8.29e-11 | 97 | 331 | 72 | 298 | Uncharacterized protein MT1551 OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT1551 PE=4 SV=1 |
B0K2C2 | 4.85e-10 | 97 | 313 | 12 | 215 | 1,2-beta-oligomannan phosphorylase OS=Thermoanaerobacter sp. (strain X514) OX=399726 GN=Teth514_1788 PE=1 SV=1 |
B0K2C3 | 1.41e-06 | 97 | 193 | 12 | 116 | Beta-1,2-mannobiose phosphorylase OS=Thermoanaerobacter sp. (strain X514) OX=399726 GN=Teth514_1789 PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000081 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.