logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000012_01077

You are here: Home > Sequence: MGYG000000012_01077

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacillus subtilis
Lineage Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus; Bacillus subtilis
CAZyme ID MGYG000000012_01077
CAZy Family GT2
CAZyme Description Plipastatin synthase subunit C
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
2555 MGYG000000012_1|CGC10 287594.51 5.26
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000012 4053580 Isolate United Kingdom Europe
Gene Location Start: 1087087;  End: 1094754  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000012_01077.

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd19543 DCL_NRPS 0.0 10 431 1 423
DCL-type Condensation domain of nonribosomal peptide synthetases (NRPSs), which catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. The DCL-type Condensation (C) domain catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. This domain is D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L)); this is in contrast with the standard LCL domains which catalyze peptide bond formation between two L-amino acids, and the restriction of ribosomes to use only L-amino acids. C domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains in addition to the LCL- and DCL-types such as starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
cd17646 A_NRPS_AB3403-like 0.0 467 953 1 488
Peptide Synthetase. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
PRK05691 PRK05691 0.0 6 1039 3253 4309
peptide synthase; Validated
PRK05691 PRK05691 0.0 1 2548 667 3247
peptide synthase; Validated
cd12117 A_NRPS_Srf_like 0.0 1509 1990 1 483
The adenylation domain of nonribosomal peptide synthetases (NRPS), including Bacillus subtilis termination module Surfactin (SrfA-C). The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and, in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the adenylation domain of the Bacillus subtilis termination module (Surfactin domain, SrfA-C) which recognizes a specific amino acid building block, which is then activated and transferred to the terminal thiol of the 4'-phosphopantetheine (Ppan) arm of the downstream peptidyl carrier protein (PCP) domain.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QND46664.1 0.0 7 2087 557 2674
ACX49739.1 8.03e-200 12 1777 11 1846
BAY30132.1 6.82e-193 959 2076 2135 3297
BAY90071.1 1.59e-191 924 2076 2078 3286
BAZ00088.1 1.61e-191 963 2076 2137 3295

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6MFZ_A 0.0 461 2081 202 1805
Crystalstructure of dimodular LgrA in a condensation state [Brevibacillus parabrevis],6MFZ_B Crystal structure of dimodular LgrA in a condensation state [Brevibacillus parabrevis]
6MFY_A 7.03e-311 461 1994 202 1716
Crystalstructure of a 5-domain construct of LgrA in the substrate donation state [Brevibacillus parabrevis],6MG0_A Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis],6MG0_B Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis]
2VSQ_A 4.89e-231 6 1041 8 1042
Structureof surfactin A synthetase C (SrfA-C), a nonribosomal peptide synthetase termination module [Bacillus subtilis]
6P1J_A 1.14e-211 1058 1990 6 964
Thestructure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo2 serine module [Eleftheria terrae],6P1J_B The structure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo2 serine module [Eleftheria terrae]
5U89_A 1.37e-192 443 1491 4 1071
Crystalstructure of a cross-module fragment from the dimodular NRPS DhbF [Geobacillus sp. Y4.1MC1]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P39846 0.0 1 2555 1 2560
Plipastatin synthase subunit B OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsB PE=1 SV=1
P94459 0.0 6 2552 1052 3600
Plipastatin synthase subunit D OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsD PE=1 SV=2
P45745 0.0 1 2070 1 2104
Dimodular nonribosomal peptide synthase OS=Bacillus subtilis (strain 168) OX=224308 GN=dhbF PE=1 SV=4
P39847 0.0 1 2555 1 2555
Plipastatin synthase subunit C OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsC PE=1 SV=2
Q04747 0.0 3 2554 1050 3580
Surfactin synthase subunit 2 OS=Bacillus subtilis (strain 168) OX=224308 GN=srfAB PE=1 SV=3

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.999991 0.000043 0.000002 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000012_01077.